Generalizations to and from Chordal Graphs

Frank Kammer and Torsten Tholey

University of Augsburg, Germany

August 2010
Chordal Graphs

intersection graphs of subtrees in a tree

Frank Kammer
University of Augsburg
interval graphs \subset chordal graphs
A clique tree of a chordal graph $G = (V, E)$ is ...

A tree $T = (W, F)$ with a mapping B for each node $w \in W$ to a so-called \textit{bag} $V' \subseteq V$ such that

- $G[B(w)]$ is a maximal clique

$G = \bigcup_{w \in W} G[B(w)]$
A clique tree of a chordal graph $G = (V, E)$ is ...

A tree $T = (W, F)$ with a mapping B for each node $w \in W$ to a so-called bag $V' \subseteq V$ such that

- $G[B(w)]$ is a maximal clique
- $G = \bigcup_{w \in W} G[B(w)]$
A clique tree of a chordal graph $G = (V, E)$ is ...

A tree $T = (W, F)$ with a mapping B for each node $w \in W$ to a so-called bag $V' \subseteq V$ such that:

- $G[B(w)]$ is a maximal clique
- $G = \bigcup_{w \in W} G[B(w)]$
- each $v \in V$ occurs exactly in the bags of a subtree of T.
A weak clique tree of a chordal graph $G = (V, E)$ is ...

A tree $T = (W, F)$ with a mapping B for each node $w \in W$ to a so-called bag $V' \subseteq V$ such that:

- $G[B(w)]$ is a maximal clique
- $G = \bigcup_{w \in W} G[B(w)]$
- each $v \in V$ occurs exactly in the bags of a subtree of T.

Frank Kammer

University of Augsburg
Given: A graph G and k vertex pairs $(s_1, t_1), \ldots, (s_k, t_k)$.

k-Disjoint Paths Problem (k-DPP)
Given: A graph G and k vertex pairs $(s_1, t_1), \ldots, (s_k, t_k)$.
Given: A graph G and k vertex pairs $(s_1, t_1), \ldots, (s_k, t_k)$.

Goal: Find k pairwise vertex disjoint paths P_1, \ldots, P_k such that s_i and t_i are the endpoints of P_i ($1 \leq i \leq k$).
Given: A graph G and k vertex pairs $(s_1, t_1), \ldots, (s_k, t_k)$.

Goal: Find k pairwise vertex disjoint paths P_1, \ldots, P_k such that s_i and t_i are the endpoints of P_i ($1 \leq i \leq k$).

k-Disjoint Paths Problem (k-DPP)

- **Given:** A graph G and k vertex pairs $(s_1, t_1), \ldots, (s_k, t_k)$.
- **Goal:** Find an extension of the initial coloring such that vertices of each color induce a connected component.
Results

ℓ-DPP on general undirected graphs:
- Robertson and Seymour [JCTB’95]: $O(n^3)$ time
- Perković and Reed [IJFCS’00]: $O(n^2)$ time

DPP on general undirected graphs:
- Lynch [SIGDA Newsletter’75]: NP-hard

Motivation

- VLSI design
- routing problems
- minor search
- ...
Results

\(\ell\)-DPP on general undirected graphs:
- Robertson and Seymour [JCTB’95]: \(O(n^3)\) time
- Perković and Reed [IJFCS’00]: \(O(n^2)\) time

DPP on general undirected graphs:
- Lynch [SIGDA Newsletter’75]: NP-hard

\(\ell\)-DPP on undirected chordal graphs:
- Kammer und Tholey [WG’09]: FPT \(O(f(\ell)n)\)

DPP on undirected chordal graphs:
- Kammer und Tholey [WG’09]: NP-hard
Chordal Graphs, i.e., Graphs with a Clique Tree

Observation if $\forall w' \neq w'' : B(w') \not\subseteq B(w'')$

Each bag of a node w is a separator in G, unless $\text{deg}(w) = 1$.
Observation if $\forall w' \neq w'' : B(w') \not\subseteq B(w'')$

Each bag of a node w is a separator in G, unless $\deg(w) = 1$.
Observation if $\forall w' \neq w'' : B(w') \not\subseteq B(w'')$

Each bag of a node w is a separator in G, unless $\text{deg}(w) = 1$.

Frank Kammer
University of Augsburg
Observation if $\forall w' \neq w'' : B(w') \not\subseteq B(w'')$

Each bag of a node w is a separator in G, unless $\deg(w) = 1$.

For a color c, take w_1 and w_2 such that their bags contain c. Connecting $c \Rightarrow$ the nodes on the w_1-w_2-path have a bag

- with ≥ 1 c-colored vertex
Chordal Graphs, i.e., Graphs with a Clique Tree

Observation if \(\forall w' \neq w'' : B(w') \not\subset B(w'') \):

Each bag of a node \(w \) is a separator in \(G \), unless \(\text{deg}(w) = 1 \).

For a color \(c \), take \(w_1 \) and \(w_2 \) such that their bags contain \(c \).

Connecting \(c \Rightarrow \) the nodes on the \(w_1-w_2 \)-path have a bag

- with \(\geq 1 \) \(c \)-colored vertex
Chordal Graphs, i.e., Graphs with a Clique Tree

Observation if $\forall w' \neq w'' : B(w') \not\subseteq B(w'')$

Each bag of a node w is a separator in G, unless $\deg(w) = 1$.

For a color c, take w_1 and w_2 such that their bags contain c. connecting $c \Rightarrow$ the nodes on the w_1-w_2-path have a bag
- with ≥ 1 c-colored vertex
Observation if $\forall w' \neq w'' : B(w') \not\subseteq B(w'')$

Each bag of a node w is a separator in G, unless $\text{deg}(w) = 1$.

For a color c, take w_1 and w_2 such that their bags contain c. Connecting $c \Rightarrow$ the nodes on the w_1-w_2-path have a bag
- with ≥ 1 c-colored vertex and
- w.l.o.g. with ≤ 2 c-colored vertices.

Frank Kammer
University of Augsburg
Chordal Graphs, i.e., Graphs with a Clique Tree

Observation if $\forall w' \neq w'': B(w') \not\subseteq B(w'')$

Each bag of a node w is a separator in G, unless $\text{deg}(w) = 1$.

For a color c, take w_1 and w_2 such that their bags contain c. Connecting $c \Rightarrow$ the nodes on the w_1-w_2-path have a bag

- with ≥ 1 c-colored vertex and
- w.l.o.g. with ≤ 2 c-colored vertices.

Ignore remaining nodes.
A clique tree for an n-vertex graph G can be found in linear time.

Some facts

- A clique tree for an n-vertex graph G has $\leq n$ nodes
Chordal Graphs, i.e., Graphs with a Clique Tree

Some facts

A clique tree for an n-vertex graph G
- has $\leq n$ nodes and
- can be found in linear time.
Some facts

A clique tree for an n-vertex graph G
- has $\leq n$ nodes and
- can be found in linear time.

Width of a clique tree

Maximum size of a bag of the clique tree minus 1.
Sketch of an algorithm

 Traverse weak clique tree bottom-up.
Sketch of an algorithm

- Traverse weak clique tree bottom-up.
Sketch of an algorithm

- Traverse weak clique tree bottom-up.
Algorithm

Sketch of an algorithm

- Traverse weak clique tree bottom-up.
- At each node \(w \) of the clique tree: Compute all valid colorings for \(B(w) \).
Algorithm

Sketch of an algorithm

- Traverse weak clique tree bottom-up.
- At each node \(w \) of the clique tree:
 Compute all valid colorings for \(B(w) \).

Properties of valid colorings for the bag \(B(w) \) of a node \(w \)

- No initially colored vertex in \(B(w) \) is recolored.
Algorithm

Sketch of an algorithm

- Traverse weak clique tree bottom-up.
- At each node \(w \) of the clique tree:
 Compute all valid colorings for \(B(w) \).

Properties of valid colorings for the bag \(B(w) \) of a node \(w \)

- No initially colored vertex in \(B(w) \) is recolored.
- Each color in \(B(w) \) is used \(\leq 2 \) times.
Algorithm

Sketch of an algorithm

- Traverse weak clique tree bottom-up.
- At each node \(w \) of the clique tree:
 Compute all valid colorings for \(B(w) \).

Properties of valid colorings for the bag \(B(w) \) of a node \(w \)

- No initially colored vertex in \(B(w) \) is recolored.
- Each color in \(B(w) \) is used \(\leq 2 \) times.
- For each child \(w' \) of \(w \):
 Extension of a valid coloring of \(B(w) \cup B(w') \).
Sketch of an algorithm

- Traverse weak clique tree bottom-up.
- At each node w of the clique tree: Compute all valid colorings for $B(w)$.

Properties of valid colorings for the bag $B(w)$ of a node w

- No initially colored vertex in $B(w)$ is recolored.
- Each color in $B(w)$ is used ≤ 2 times.
- For each child w' of w:
 - Extension of a valid coloring of $B(w) \cup B(w')$.
- For each $w' \in N(w)$ with $B(w) \cap B(w')$ separating color c:
 - One vertex of $B(w) \cap B(w')$ is colored with c.
Algorithm

Sketch of an algorithm

- Traverse weak clique tree bottom-up.
- At each node \(w \) of the clique tree: Compute all valid colorings for \(B(w) \).

Valid coloring \(B(w) \) corresponds to an extendable coloring for tree below \(w \).

Properties of valid colorings for the bag \(B(w) \) of a node \(w \)

- No initially colored vertex in \(B(w) \) is recolored.
- Each color in \(B(w) \) is used \(\leq 2 \) times.
- For each child \(w' \) of \(w \):
 - Extension of a valid coloring of \(B(w) \cup B(w') \).
- For each \(w' \in N(w) \) with \(B(w) \cap B(w') \) separating color \(c \): One vertex of \(B(w) \cap B(w') \) is colored with \(c \).
Algorithm

Sketch of an algorithm

- Traverse weak clique tree bottom-up.
- At each node w of the clique tree: Compute all valid colorings for $B(w)$.

\Rightarrow At the root we obtain a solution for the k-DPP.

Properties of valid colorings for the bag $B(w)$ of a node w

- No initially colored vertex in $B(w)$ is recolored.
- Each color in $B(w)$ is used ≤ 2 times.
- For each child w' of w:
 - Extension of a valid coloring of $B(w) \cup B(w')$.
- For each $w' \in N(w)$ with $B(w) \cap B(w')$ separating color c:
 - One vertex of $B(w) \cap B(w')$ is colored with c.

Frank Kammer
University of Augsburg
Algorithm

Sketch of an algorithm

- Traverse weak clique tree bottom-up.
- At each node w of the clique tree:
 - Compute all valid colorings for $B(w)$.

If clique tree has width r, $\leq (r + 2)^{2^k}$ colorings are analyzed for each bag.

Properties of valid colorings for the bag $B(w)$ of a node w

- No initially colored vertex in $B(w)$ is recolored.
- Each color in $B(w)$ is used ≤ 2 times.
- For each child w' of w:
 - Extension of a valid coloring of $B(w) \cup B(w')$.
- For each $w' \in N(w)$ with $B(w) \cap B(w')$ separating color c:
 - One vertex of $B(w) \cap B(w')$ is colored with c.

Frank Kammer
University of Augsburg
Sketch of an algorithm

- Traverse weak clique tree bottom-up.
- At each node w of the clique tree:
 Compute all valid colorings for $B(w)$.

Since an n-vertex chordal graph G has clique tree width $r \leq n$, the k-DPP is solvable on G in polynomial time.

Properties of valid colorings for the bag $B(w)$ of a node w

- No initially colored vertex in $B(w)$ is recolored.
- Each color in $B(w)$ is used ≤ 2 times.
- For each child w' of w:
 Extension of a valid coloring of $B(w) \cup B(w')$.
- For each $w' \in N(w)$ with $B(w) \cap B(w')$ separating color c:
 One vertex of $B(w) \cap B(w')$ is colored with c.
Example
Valid colorings for B_{11}

$B_{11} \cap B_6 = \{x\}$ is a separator for green $\Rightarrow x$ must be green.
Valid colorings for B_{12}

Two valid colorings: One colors x and the other d in blue.
Valid colorings for B_{12}

Two valid colorings: One colors x and the other d in blue.
Valid colorings for B_6

Simultaneous extend valid colorings of B_{11} and B_{12}.

Frank Kammer
University of Augsburg
Example

Valid colorings for B_6

For connecting green, additionally k must be green.
Valid colorings for B_7

Extend valid colorings \Rightarrow k must be green & d must be blue.
Valid colorings for B_7

Moreover, exactly one of a, f or q must be green.
Valid colorings for B_7

Moreover, exactly one of a, f or q must be green.
Valid colorings for B_7

Moreover, exactly one of a, f or q must be green.
Valid colorings for B_1

j must be green since $B_1 \cap B_2 = \{d, j\}$ is a separator for green.

Frank Kammer
University of Augsburg
Valid colorings for B_1

Again, exactly one of a, f or q must be green.
Valid colorings for B_3

Extend valid colorings $\Rightarrow j$ must be green & d must be blue.
Valid colorings for B_3

Similar argumentation: Either s green & y blue or vice versa.
Valid colorings for B_3

Similar argumentation: Either s green & y blue or vice versa.
Valid colorings for B_3

$$(B_8 \cap B_3) \setminus \{d, j, s, y\} = \{h\} \Rightarrow h \text{ must be red.}$$
Valid colorings for B_3

Exactly one of e, n or t must be red. In sum, 6 valid colorings.
Valid colorings for B_4

Each valid coloring of B_3 can be extended. s remains colored.
Valid colorings for B_4

We can extend only valid colorings of B_5 with s uncolored, v red.
Recall: For each node x of T, its bag $B(x)$ has only ≤ 2 vertices for each color c.
In our example: For each edge \(\{x, y\} \) of \(T \) used by a color \(c \), its edge bag \(B(\{x, y\}) = B(x) \cap B(y) \) has one \(c \)-colored vertex.
For each edge \(\{x, y\} \) of \(T \),
\[
|B(\{x, y\})| \geq \#(\text{colors using } \{x, y\}); \text{ remove rest.}
\]
For each edge \(\{x, y\} \) of \(T \),
guarantee \(|B(\{x, y\})| \geq \#(\text{colors using}\{x, y\}) \); remove rest.
Goal: Remove occurrences of a vertex v such that the nodes whose bags contain v induce a subtree.
Iterate over c: For each B_i, if a c-colored vertex v is below B_i, take up to $\ell \in \mathbb{N}$ vertices of B_i closest to v for B_i.

Frank Kammer
University of Augsburg
Example for $\ell = 1$

Iterate over c: For each B_i, if a c-colored vertex v is below B_i, take up to $\ell \in \mathbb{IN}$ vertices of B_i closest to v for B_i.

Frank Kammer
University of Augsburg
Example for $\ell = 1$

Iterate over c: For each B_i, if a c-colored vertex v is below B_i, take up to $\ell \in \mathbb{IN}$ vertices of B_i closest to v for B_i.
Example for $\ell = 1$

Iterate over c: For each B_i, if a c-colored vertex v is below B_i, take up to $\ell \in \mathbb{N}$ vertices of B_i closest to v for B_i.
Example for $\ell = 1$

Iterate over c: For each B_i, if a c-colored vertex v is below B_i, take up to $\ell \in \mathbb{N}$ vertices of B_i closest to v for B_i & child bags.
Example for $\ell = 1$

Lemma: If a vertex is chosen at a bag B_i, then it is chosen at all ancestors of B_i.

\Rightarrow Each vertex is part of bags of 1 subtree.
Lemma: If a vertex is chosen at a bag B_i, then it is chosen at all ancestors of B_i.
\Rightarrow Each vertex is part of bags of 1 subtree.
Example for $\ell = 1$

Lemma: If a vertex is chosen at a bag B_i, then it is chosen at all ancestors of B_i. \implies Each vertex is part of bags of 1 subtree.

Frank Kammer
University of Augsburg
Lemma: If a vertex is chosen at a bag B_i, then it is chosen at all ancestors of B_i. ⇒ Each vertex is part of bags of 1 subtree.
Lemma: If a vertex is chosen at a bag B_i, then it is chosen at all ancestors of B_i. \Rightarrow Each vertex is part of bags of 1 subtree.
Lemma: For each color, we can independently choose vertices as described.
Lemma: For each color, we can independently choose vertices as described. We get a weak clique tree \((T', B')\) for some \(G'\).
Example for $\ell = 1$

Theorem: For connecting k colors, $\ell = 2k$ is enough.
Example for $\ell = 1$

Theorem: For connecting k colors, $\ell = 2k$ is enough.

$\text{solution in } (T, B) \implies \text{solution in weak clique tree } (T', B')$
solution in \((T, B)\) \(\Rightarrow\) solution in \((T', B')\)

A path of \(T\) whose endpoints contain two red terminals.

Frank Kammer
University of Augsburg
solution in \((T, B) \Rightarrow \text{solution in } (T', B')\)

Frank Kammer
University of Augsburg
A solution for red in \((T, B)\) such that each color occurs at most twice in a bag of \(B\).
solution in \((T, B) \Rightarrow \text{solution in } (T', B')\)

small circles \(\Leftrightarrow\) bags of \((T', B')\)
solution in \((T, B) \Rightarrow \) solution in \((T', B')\)

\[
B(\{x, y\}) = B(x) \cap B(y) \quad B'(\{x, y\}) = B'(x) \cap B'(y)
\]
solution in \((T, B) \Rightarrow \) solution in \((T', B')\)

Invariant: For each edge \(\{x, y\}\) of \(T'\) and each color \(c\),

\[
\text{there are} \leq 2 \text{ } c\text{-colored vertices in } B'(\{x, y\}).
\]
solution in \((T, B) \Rightarrow\) solution in \((T', B')\)

Invariant: For each edge \(\{x, y\}\) of \(T'\) and each color \(c\),

\[
\text{there are } \leq 2 \text{ } c\text{-colored vertices in } B'(\{x, y\}).
\]

an edge bag of \((T, B)\) is small \(\Leftrightarrow\) less than \(\ell\) vertices
solution in \((T, B) \Rightarrow solution in \((T', B')\)

Invariant: For each edge \(\{x, y\}\) of \(T'\) and each color \(c\),

there are \(\leq 2\) \(c\)-colored vertices in \(B'(\{x, y\})\).

Lemma:

\[B(\{x, y\}) \text{ is small } \Rightarrow B'(\{x, y\}) = B(\{x, y\}) \]
solution in \((T, B) \Rightarrow \) solution in \((T', B')\)

Invariant: For each edge \(\{x, y\}\) of \(T'\) and each color \(c\),

\[
\text{there are } \leq 2 \text{-} c\text{-colored vertices in } B'(\{x, y\}).
\]

Color break for an edge \(\{x, y\}\): No red vertex is in \(B'(\{x, y\})\).
Invariant: For each edge \(\{x, y\} \) of \(T' \) and each color \(c \), there are \(\leq 2 \) \(c \)-colored vertices in \(B'(\{x, y\}) \).

Color break for an edge \(\{x, y\} \): No red vertex is in \(B'(\{x, y\}) \).
Invariant: For each edge \(\{x, y\} \) of \(T' \) and each color \(c \), there are \(\leq 2 \) \(c \)-colored vertices in \(B'(\{x, y\}) \).

Finally, if \(B'(x) \) of a node \(x \) has \(\geq 3 \) \(c \)-colored vertices, we can uncolor one vertex in \(B'(x) \).
Invariant: For each edge \(\{x, y\} \) of \(T' \) and each color \(c \), there are \(\leq 2 \) \(c \)-colored vertices in \(B'(\{x, y\}) \).

Finally, if \(B'(x) \) of a node \(x \) has \(\geq 3 \) \(c \)-colored vertices, we can uncolor one vertex in \(B'(x) \).
Invariant: For each edge \(\{x, y\} \) of \(T' \) and each color \(c \), there are \(\leq 2 \) \(c \)-colored vertices in \(B'(\{x, y\}) \).

Corollary (for fixed \(k \))

A bag of \((T', B') \) contains \(\leq 2k\ell = 4k^2 = O(1) \) vertices.
Invariant: For each edge \(\{x, y\} \) of \(T' \) and each color \(c \), there are \(\leq 2 \) \(c \)-colored vertices in \(B'(\{x, y\}) \).

Corollary (for fixed \(k \))

The \(k \)-DPP is solvable in linear time on chordal graphs.
1-in-3 SAT

Given: a formula in 3-CNF

Goal: find an assignment s.t. 1 literal is true in every clause
1-in-3 SAT

Given: a formula in 3-CNF

Goal: find an assignment s.t. 1 literal is true in every clause

monotone formula

every literal is positive
1-in-3 SAT

Given: a formula in 3-CNF
Goal: find an assignment s.t. 1 literal is true in every clause

monotone formula
every literal is positive

cubic
every variable occurs exactly three times
1-in-3 SAT

Given: a formula in 3-CNF

Goal: find an assignment s.t. 1 literal is true in every clause

monotone formula

every literal is positive

cubic

every variable occurs exactly three times

Moore and Robson [Discrete and Comput. Geom. '01]

1-in-3 SAT restricted to monotone cubic formulas is NP-hard
Some notation

- the graph G is defined by its clique tree
Some notation

- The graph G is defined by its clique tree
- Black lines identify the same vertex

Diagram:

```
\begin{align*}
& a_1 \quad a_2 \\
& b_1 \quad b_2 \\
& y_1 \quad y_2 \\
& z_1 \quad z_2
\end{align*}
```
Some notation

- The graph G is defined by its clique tree.
- Black lines identify the same vertex.
- The vertices of each bag induce a clique in G.
Some notation

- The graph G is defined by its clique tree.
- Black lines identify the same vertex.
- The vertices of each bag induce a clique in G.
- Only some edges are shown (in gray).

Frank Kammer
University of Augsburg
Observation

\(a_1 \) and \(a_2 \) can be connected to
Observation

\(a_1\) and \(a_2\) can be connected to only \(y_1\) and \(z_1\)

if \(b_1\) and \(b_2\) also want to be connected.
Observation

a_1 and a_2 can be connected to only y_1 and z_1
if b_1 and b_2 also want to be connected.

all vertices are used by the paths!
NP-hardness of the DPP on Chordal Graphs

Reduction from 1-in-3 SAT restricted to monotone cubic formulas
Reduction from 1-in-3 SAT restricted to monotone cubic formulas
Create a blue gadget for each variable.
Reduction from 1-in-3 SAT restricted to monotone cubic formulas

Create a yellow gadget for each clause.
NP-hardness of the DPP on Chordal Graphs

Reduction from 1-in-3 SAT restricted to monotone cubic formulas

If a variable x_1 occurs in a clause C_1, identify a square vertex in the gadgets for x_1 and C_1.
Reduction from 1-in-3 SAT restricted to monotone cubic formulas

If a variable x_1 occurs in a clause C_1, identify a square vertex as well as a triangle vertex in the gadgets for x_1 and C_1.

Frank Kammer
Reduction from 1-in-3 SAT restricted to monotone cubic formulas

Moreover, for some $i, j \in \{1, 2, 3\}$ (e.g., $i = 2$ and $j = 1$) the instance has a terminal-pair (a_i, y_j) and (b_i, z_j).
Reduction from 1-in-3 SAT restricted to monotone cubic formulas

The vertex identification and the terminal pairs \((a_i, y_j), (b_i, z_j)\) is applied to each occurrence of a variable in a clause.
Reduction from 1-in-3 SAT restricted to monotone cubic formulas

The vertex identification and the terminal pairs \((a_i, y_j), (b_i, z_j)\) is applied to each occurrence of a variable in a clause.
To show: 1-in-3 truth assignment \Rightarrow solution for the DPP

- variable is true \Rightarrow
 - a-terminal $\sim\triangledown\sim$ y-terminal

- variable is false \Rightarrow
 - a-terminal $\sim\blacksquare\sim$ y-terminal
To show: 1-in-3 truth assignment \iff solution for the DPP

Lemma: All paths from the A-terminals leave a variable gadget by the \triangle or \blacksquare-vertices.
To show: 1-in-3 truth assignment \iff solution for the DPP

Lemma: All paths from the A-terminals leave a variable gadget by the \triangle or \blacksquare-vertices. **Def:** A-Paths use $\triangle \iff$ variable is true
NP-hardness of the DPP on Chordal Graphs

1-in-3 truth assignment \iff solution for the DPP
1-in-3 truth assignment ⇔ solution for the DPP

DPP is NP-hard on chordal graphs.
Generalizations

New results by generalizing algorithms on trees

On undirected chordal n-vertex graphs:

- Linear time for the k-DPP
 (i.e., DPP is FPT on chordal graphs)
- DPP is NP-hard

Next, some ideas to generalize algorithms on chordal graphs by introducing 3 complexity parameters.
Definition

The neighbors of each vertex can be divided into \(k \) cliques.

\(k \)-approximation for

- Minimum Dominating Set
- Minimum Independent Dominating Set
- Maximum Weighted Independent Set
- ...
Definition

The neighbors of each vertex can be divided into k cliques.

k-approximation for

- Minimum Dominating Set
- Minimum Independent Dominating Set
- Maximum Weighted Independent Set
- ...
k-groupable graphs: unit-disk graphs

Frank Kammer
unit disk graphs are 7-groupable

\[R = (2 \cos(30) - 1)r \]
unit disk graphs are 7-groupable

\[R = (2 \cos(30) - 1)r \]
unit disk graphs are 7-groupable

\[R = (2 \cos(30) - 1)r \]
k-groupable graphs: unit-square graphs
unit square graphs are 10-groupable
Definition

There is a numbering of the vertices such that, for each vertex, its incident vertices of larger number can be divided into k cliques.

called successor cliques

k-approximation for

- Maximum Weighted Independent Set
- Maximum Weighted Clique
- Minimum Clique Partition
- ...

k-eliminable graphs

Frank Kammer
University of Augsburg
Definition

There is a numbering of the vertices such that, for each vertex, its incident vertices of larger number can be divided into k cliques.

-called successor cliques-

k-approximation for

- Maximum Weighted Independent Set
- Maximum Weighted Clique
- Minimum Clique Partition
- ...
Lemma

Disk graphs are 7-eliminable.
For each object, ratio of the radius of the outball and of the inball is bounded.
Definition

There is an orientation of the edges such that the endpoints of the outgoing edges of each vertex can be partitioned into \(k \) cliques.

2k-approximation for

- Maximum Weighted Independent Set
- Maximum Weighted Clique
- Minimum Vertex Coloring
- ...
Definition

There is an orientation of the edges such that the endpoints of the outgoing edges of each vertex can be partitioned into k cliques.

2k-approximation for

- Maximum Weighted Independent Set
- Maximum Weighted Clique
- Minimum Vertex Coloring
- ...
For each object, ratio of the radius of the outball and of the inball is bounded.
Max Independent Set on k-eliminable graphs

An algorithm with a k-approximation:

- Set $S = \emptyset$.
- Process vertices in order of the numbering:
 - For v, test if not deleted (i.e., $N(v) \cap S = \emptyset$).
 - If so, add v into S and delete $N[v]$.
- Return S.
An algorithm with a $2k$-approximation:

- Find order v_1, \ldots, v_n with v_i in $G[v_i, \ldots, v_n]$ having not less outgoing than incoming edges.
An algorithm with a $2k$-approximation:

- Find order v_1, \ldots, v_n with v_i in $G[v_i, \ldots, v_n]$ having not less outgoing than incoming edges.
- Color $v_n, v_{n-1}, \ldots, v_1$ by the lowest available number in \mathbb{N}.

$G[v_i, \ldots, v_n]$:

- Largest successor clique: size x
- $|\text{incoming edges}| \leq |\text{outgoing edges}|$
Min Vertex Coloring on k-orientable graphs

An algorithm with a $2k$-approximation:

- Find order v_1, \ldots, v_n with v_i in $G[v_i, \ldots, v_n]$ having not less outgoing than incoming edges.
- Color $v_n, v_{n-1}, \ldots, v_1$ by the lowest available number in \mathbb{N}.
- In every step, the assigned number is less $2k$ times OPT.

$$|\text{incoming edges}| \leq |\text{outgoing edges}|$$
The 3 Parameters

The interaction of the graph classes

- k-groupable
- k-eliminable
- k-orientable
- Chordal
- Treewidth k

Lemma: All 3 parameters are NP-hard.

Proof: Reduction from minimum clique partition problem.