Finding disjoint Paths in Graphs

Torsten Tholey

Universität Augsburg

September 2011
Finding Disjoint Paths

Given: A graph with sources and targets.
Problem: Connect sources and targets by disjoint paths.
The problem

Finding Disjoint Paths

Given: A graph with sources and targets.
Problem: Connect sources and targets by disjoint paths.
The problem

Several version

- single/multiple sources and targets.
Several version

- single/multiple sources and targets.
Several versions:

- single/multiple sources and targets.
- connecting sets/pairs sources/targets.
The problem

Several version

- single/multiple sources and targets.
- connecting sets/pairs sources/targets.
The problem

Several version

- single/multiple sources and targets.
- connecting sets/pairs sources/targets.
- vertex-/edge-disjoint paths.
Several version

- single/multiple sources and targets.
- connecting sets/pairs sources/targets.
- vertex-/edge-disjoint paths.
The problem

Several versions

- single/multiple sources and targets.
- connecting sets/pairs sources/targets.
- vertex-/edge-disjoint paths.
- in undirected/directed graphs
The problem

Several versions

- single/multiple sources and targets.
- connecting sets/pairs sources/targets.
- vertex-/edge-disjoint paths.
- in undirected/directed graphs
The problem

Applications

- routing in computer/traffic networks
- reliability of networks
- VLSI design
A first problem

Given: vertices s and t in a directed graph, $k \in \mathbb{N}$

Output: k edge-disjoint paths from s to t, if they exist.
A first approach

Repeat:
- Return a path p.
- Delete p from G

Until there is no path in G
The approach does not work

G

G, p_1
The approach does not work
The approach does not work.

In $G \setminus \{p_1, p_2\}$ there is no path from s to t.
The approach does not work

Let G be a graph with single vertices s, t, a, b, c, d, e, and f. Consider two paths $p_1 = s \rightarrow t$ and $p_2 = a \rightarrow b$. In the graph $G \backslash \{p_1, p_2\}$, there is no path from s to t.

However, in G there are three edge-disjoint paths $p_i : s \rightarrow t$:
The approach does not work

G

$G \{ p_1, p_2 \}$
Conclusion

Problem: We make wrong decisions.
Conclusion

Problem: We make wrong decisions.

Solution: Edges of already constructed paths may be used in reverse direction.
Conclusion

Problem: We make wrong decisions.

Solution: Edges of already constructed paths may be used in reverse direction. Afterward delete doubly visited edges.
Connecting single vertices

residual graph G_{p_1,\ldots,p_k}

Given: A graph G, edge-disjoint paths p_1, \ldots, p_k

G_{p_1,\ldots,p_k}: Graph obtained from G be reversing the edges of p_1, \ldots, p_k.

G, p_1, p_2

R_{G,p_1,p_2}
Deletion of edges from a path in the residual graph
Deletion of edges from a path in the residual graph
Deletion of edges from a path in the residual graph
The algorithm of Ford and Fulkerson

1. **For** $i = 1$ **to** k:

2. Construct $R_{G,p_1,...,p_{i-1}}$ ($= G$ if $i = 1$). $O(m + n)$

3. Find a path $p : s \rightarrow t$ in $R_{G,p_1,...,p_{i-1}}$. $O(m + n)$

4. Delete all backward edges from p and the corresponding forward edges from p. $O(m + n)$

5. Rename the resulting paths p_1, \ldots, p_i. $O(m + n)$

6. **End For**

Running time: $O(k(m + n))$.
The algorithm of Ford and Fulkerson

1. **For** $i = 1$ **to** k:
2. Construct $R_{G, p_1, \ldots, p_{i-1}}$ (= G if $i = 1$). $O(m + n)$
3. Find a path $p : s \rightarrow t$ in $R_{G, p_1, \ldots, p_{i-1}}$. $O(m + n)$
4. Delete all backward edges from p and the corresponding forward edges from p. $O(m + n)$
5. Rename the resulting paths p_1, \ldots, p_i. $O(m + n)$
6. **End For**

Running time: $O(k(m + n))$.

Correctness

We have to show: If there is no path $p : s \rightarrow t$ in R_{p_1, \ldots, p_k}, then G has at most k edge-disjoint paths from s to t.
s, t-edge cut

An s, t-edge cut is a set S of edges with s, t being not connected in $G \setminus S$.
Lemma 1

For an s-t edge-cut C, there are at most $|C|$ edge-disjoint paths from s to t.

Proof

Every paths from s to t must visit an edge of C.

Connecting single vertices
Lemma 2

If there is no path $p : s \rightarrow t$ in R_{p_1, \ldots, p_k}, then $G = (V, E)$ has at most k edge-disjoint paths from s to t.
Lemma 2

If there is no path $p : s \rightarrow t$ in R_{p_1, \ldots, p_k}, then $G = (V, E)$ has at most k edge-disjoint paths from s to t.

Proof

Assume there is no path $p : s \rightarrow t$ in R_{p_1, \ldots, p_k}.
Lemma 2

If there is no path $p : s \rightarrow t$ in R_{p_1, \ldots, p_k}, then $G = (V, E)$ has at most k edge-disjoint paths from s to t.

Proof

- Assume there is no path $p : s \rightarrow t$ in R_{p_1, \ldots, p_k}.
- Let S be the vertices reachable from s in R_{p_1, \ldots, p_k}.
Lemma 2

If there is no path $p : s \rightarrow t$ in R_{p_1,\ldots,p_k}, then $G = (V, E)$ has at most k edge-disjoint paths from s to t.

Proof

- Assume there is no path $p : s \rightarrow t$ in R_{p_1,\ldots,p_k}.
- Let S be the vertices reachable from s in R_{p_1,\ldots,p_k}.

$\Rightarrow F = S \times (V \setminus S)$ is an s,t-edge cut in G.
Lemma 2

If there is no path $p : s \rightarrow t$ in R_{p_1, \ldots, p_k}, then $G = (V, E)$ has at most k edge-disjoint paths from s to t.

Proof

- Assume there is no path $p : s \rightarrow t$ in R_{p_1, \ldots, p_k}.
- Let S be the vertices reachable from s in R_{p_1, \ldots, p_k}.

$\implies F = S \times (V \setminus S)$ is an s, t-edge cut in G.

\implies Every path from s to t uses an edge in F.
Lemma 2
If there is no path $p : s \rightarrow t$ in $R_{p_1,...,p_k}$, then $G = (V, E)$ has at most k edge-disjoint paths from s to t.

Proof
- Assume there is no path $p : s \rightarrow t$ in $R_{p_1,...,p_k}$.
- Let S be the vertices reachable from s in $R_{p_1,...,p_k}$.
- $F = S \times (V \setminus S)$ is an s, t-edge cut in G.
- Every path from s to t uses an edge in F.
- No path $p : s \rightarrow t$ uses an edge in $(V \setminus S) \times S$ (otherwise there is an backward edge in $S \times (V \setminus S)$ in $R_{p_1,...,p_k}$).
Connecting single vertices

Lemma 2

If there is no path $p : s \rightarrow t$ in R_{p_1, \ldots, p_k}, then $G = (V, E)$ has at most k edge-disjoint paths from s to t.

Proof

- Assume there is no path $p : s \rightarrow t$ in R_{p_1, \ldots, p_k}.
- Let S be the vertices reachable from s in R_{p_1, \ldots, p_k}.

$\Rightarrow F = S \times (V \setminus S)$ is an s, t-edge cut in G.

\Rightarrow Every path from s to t uses an edge in F.

- No path $p : s \rightarrow t$ uses an edge in $(V \setminus S) \times S$ (otherwise there is an backward edge in $S \times (V \setminus S)$ in R_{p_1, \ldots, p_k}).
- All edges in F are visited by a path in p_1, \ldots, p_k.
Lemma 2

If there is no path $p : s \rightarrow t$ in $R_{p_1,...,p_k}$, then $G = (V, E)$ has at most k edge-disjoint paths from s to t.

Proof

- Assume there is no path $p : s \rightarrow t$ in $R_{p_1,...,p_k}$.
- Let S be the vertices reachable from s in $R_{p_1,...,p_k}$.
 \[F = S \times (V \setminus S) \] is an s, t-edge cut in G.
 Every path from s to t uses an edge in F.
- No path $p : s \rightarrow t$ uses an edge in $(V \setminus S) \times S$ (otherwise there is an backward edge in $S \times (V \setminus S)$ in $R_{p_1,...,p_k}$).
- All edges in F are visited by a path in p_1, \ldots, p_k.
 \[|F| = k. \]
Lemma 2

If there is no path \(p : s \rightarrow t \) in \(R_{p_1, \ldots, p_k} \), then \(G = (V, E) \) has at most \(k \) edge-disjoint paths from \(s \) to \(t \).

Proof

- Assume there is no path \(p : s \rightarrow t \) in \(R_{p_1, \ldots, p_k} \).
- Let \(S \) be the vertices reachable from \(s \) in \(R_{p_1, \ldots, p_k} \).
 \[F = S \times (V \setminus S) \] is an \(s, t \)-edge cut in \(G \).
 Every path from \(s \) to \(t \) uses an edge in \(F \).
- No path \(p : s \rightarrow t \) uses an edge in \((V \setminus S) \times S \) (otherwise there is an backward edge in \(S \times (V \setminus S) \) in \(R_{p_1, \ldots, p_k} \)).
- All edges in \(F \) are visited by a path in \(p_1, \ldots, p_k \).
 \[|F| = k. \]
 There are at most \(k = |F| \) paths (Lemma 1).
Observation 1

Lemma 1 and the line $|F| = k$ in the last lemma also imply the following theorem.
Observation 1

Lemma 1 and the line $|F| = k$ in the last lemma also imply the following theorem.

Menger’s Theorem

There are k-edge disjoint paths between two vertices if and only if there are no s, t-edge cut of size $k - 1$.
Observation 1

Lemma 1 and the line $|F| = k$ in the last lemma also imply the following theorem.

Menger’s Theorem

There are k-edge disjoint paths between two vertices if and only if there are no s, t-edge cut of size $k - 1$.

Menger’s Theorem (vertex version)

There are k-vertex disjoint paths between two nonadjacent vertices if and only if there are no s, t-vertex cut of size $k - 1$.

Connecting single vertices
Connecting single vertices

Other versions

If we want to find edge-disjoint paths in an undirected graph

- we replace an edge \(\{u, v\} \) by directed edges \((u, v), (v, u)\).
If we want to find edge-disjoint paths in an undirected graph
- we replace an edge \(\{u, v\} \) by directed edges \((u, v), (v, u)\).
- A solution might use the same edge in different directions.
Connecting single vertices

Other versions

If we want to find edge-disjoint paths in an undirected graph
- we replace an edge \(\{u, v\} \) by directed edges \((u, v), (v, u)\).
- A solution might use the same edge in different directions.
- Doubly visited edges can be removed as backward edges and their counterparts.
Connecting single vertices

Other versions

For finding vertex-disjoint paths in a directed graph G, let G' be obtained from G by replacing

- each vertex by vertices v' and v'' and an edge (v, v').
- each edge (u, v) by an edge (u', v').

![Diagram showing transformation from G to G'](image-url)
Observation 1:
For every path

\[x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow \cdots \rightarrow x_{k-2} \rightarrow x_{k-1} \rightarrow x_k \]

in \(G \), there is a path in \(G' \)

\[x_1'' \rightarrow x_2' \rightarrow x_2'' \rightarrow x_3' \rightarrow \cdots \rightarrow x_{k-2}' \rightarrow x_{k-1}' \rightarrow x_{k-1}'' \rightarrow x_k' \]

and vice versa.
Observation 1:
For every path

\[x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow \cdots \rightarrow x_{k-2} \rightarrow x_{k-1} \rightarrow x_k \]

in \(G \), there is a path in \(G' \)

\[x_1'' \rightarrow x_2' \rightarrow x_2'' \rightarrow x_3' \rightarrow \cdots \rightarrow x_{k-2}'' \rightarrow x_{k-1}' \rightarrow x_{k-1}'' \rightarrow x_k' \]

and vice versa.

Observation 2:
There are \(k \) internally vertex-disjoint paths \(s \rightarrow t \) in \(G \)

\(\iff \)
There are \(k \) edge-disjoint path \(s'' \rightarrow t' \) in \(G' \).
Connecting single vertices

Other versions

If we want to find vertex-disjoint paths in an undirected graph we replace an vertex \(\{u, v\} \) by directed edges \((u, v), (v, u)\).
Connecting single vertices

Other versions

If we want to find vertex-disjoint paths in an undirected graph

- we replace an vertex \(\{u, v\} \) by directed edges
 \((u, v), (v, u)\).
Connecting single vertices

Theorem
Given two vertices s and t in an undirected or directed graph, k edge or internally vertex-disjoint paths from s to t can be computed in $O(k(m + n))$ time.
Theorem

Given two vertices s and t in an undirected or directed graph, k edge or internally vertex-disjoint paths from s to t can be computed in $O(k(m + n))$ time.

Theorem

Given two vertices s and t in an undirected or directed graph G, a maximum number edge or internally vertex-disjoint paths from s to t can be computed in $O(n(m + n))$ time.
Theorem
Given two vertices s and t in an undirected or directed graph, k edge or internally vertex-disjoint paths from s to t can be computed in $O(k(m + n))$ time.

Theorem
Given two vertices s and t in an undirected or directed graph G, a maximum number edge or internally vertex-disjoint paths from s to t can be computed in $O(n(m + n))$ time.

Proof
There are at most $n - 1$ such paths since $\deg(s) \leq n - 1$.
Question?

Can a maximum number of disjoint paths from s and t be computed faster.
Question?
Can a maximum number of disjoint paths from s and t be computed faster.

Definition

Given: Vertices s and t in a directed G.
$L(G, s, t)$: The graph obtained from G after

1. removing all edge (v,w) with $\text{dist}_G(v, t) \neq \text{dist}_G(w, t) + 1$
2. removing all vertices not reachable from s.
3. removing all vertices from which t is not reachable.
Connecting single vertices

Construction of $L(G, s, t)$
Connecting single vertices

Construction of $L(G, s, t)$
Advantages of a level graph

- we can construct a path p in reverse direction in $O(|p|)$ instead of $O(m + n)$ time:

 Starting with $p : t \rightarrow t$ always add a vertex with a distance one larger than the current start point.

- Time for computing the set T of edges of $L(G, s, t)$ from which t is not reachable in $L(G \setminus p, s, t)$: $O(|T|)$

 (During the construction of p, remove the edges of p from $L(G, s, t)$, after removing an edge (u, v) update $\text{outdeg}(u)$, and for each vertex with $\text{outdeg}(u) = 0$ remove all edges ending in u.)

- Time for computing the set S of edges of $L(G, s, t)$ not reachable from S in $L(G \setminus p, s, t)$: $O(|S|)$.

Advantages of a level graph

- \(L(G \setminus p, s, t) \) can be constructed in a time linear in the edges of \(L(G, s, t) - L(G \setminus p, s, t) \).

\[\Rightarrow \]

Applying the algorithm recursively on \(L(G \setminus p, s, t) \) a maximal number of edge-disjoint paths in \(L(G, s, t) \) can be computed in \(O(m + n) \) time.
Connecting single vertices

Update of the level graph

a) \(T = \emptyset \)

\[
\begin{array}{c}
\text{s} \\
\text{a} \\
\end{array}
\begin{array}{c}
\text{c} \\
\text{u} \\
\end{array}
\begin{array}{c}
\text{g} \\
\text{h} \\
\end{array}
\begin{array}{c}
\text{p} \\
\end{array}
\begin{array}{c}
\text{f} \\
\text{v} \\
\text{b} \\
\text{r} \\
\end{array}
\begin{array}{c}
\text{t} \\
\text{m} \\
\end{array}
\]

b) \(T = T \cup \{ g \} \)

\[
\begin{array}{c}
\text{s} \\
\text{a} \\
\text{g} \\
\text{c} \\
\text{u} \\
\end{array}
\begin{array}{c}
\text{h} \\
\text{p} \\
\end{array}
\begin{array}{c}
\text{f} \\
\text{v} \\
\text{b} \\
\text{r} \\
\end{array}
\begin{array}{c}
\text{m} \\
\text{t} \\
\end{array}
\]

Torsten Tholey

Universität Augsburg
Update of the level graph

b)

\[T = T \cup \{c, r\} \]
Connecting single vertices

Update of the level graph

c)

\[T = T \cup \{ a, b, u \} \]
Update of the level graph

d) $T = T \cup \emptyset$
Connecting single vertices

Update of the level graph

e) Torsten Tholey

Universität Augsburg
The algorithm of Dinitz

1. \(R := G \);
2. \textbf{while} \(t \) is reachable from \(s \) in \(R \)
3. \(\text{Construct } G' = L(R, s, t), \ j = 0 \)
4. \textbf{while} \(t \) is reachable from \(s \) in \(G' \)
5. \(j = j + 1 \).
6. \(\text{Construct a path } q_j : s \rightarrow t \) in \(G' \) and update \(G' \) as the level graph without \(q_j \)
7. \textbf{end while}
8. Replace \(p_1, \ldots, p_i, q_1, \ldots, q_j \) by edge-disjoint paths \(p'_1, \ldots, p'_{i+j} \) in \(G \).
9. Rename \(p'_1, \ldots, p'_{i+j} \) in \(p_1, \ldots, p_{i+j} \).
10. \(i := i + j \)
11. \(R := R_{G, p_1, \ldots, p_i} \)
12. \textbf{end while}
Analyzing running time

- The outer loop divides the algorithms into rounds.
- We will show the distance between \(s \) and \(t \) in the residual graph \(R \) increases after each round.
 - After \(\sqrt{m} \) rounds the distance is \(O(\sqrt{m}) \).
 - There are at most \(O(\sqrt{m}) \) edge-disjoint paths in \(R \).
 - There are at most \(O(\sqrt{m}) \) additional paths in \(G \).
 - The algorithm stops after \(O(\sqrt{m}) \) additional rounds.
 - The total running time is \(O(\sqrt{m}(m + n)) \).
Lemma

the distance between s and t in R increases after each round.
Lemma
the distance between s and t in R increases after each round.

Proof
- Each path $p : s \rightarrow t$ in R has $dist_R(s, t)$ edges.
- R has no edges (v, w) with $dist_R(v, t) > dist_R(w, t) + 1$.
Lemma

the distance between s and t in R increases after each round.

Proof

- Each path $p : s \rightarrow t$ in R has $\text{dist}_R(s, t)$ edges.
- R has no edges (v, w) with $\text{dist}_R(v, t) > \text{dist}_R(w, t) + 1$.
- $\text{dist}_R(v, t) = \text{dist}_R(w, t) + 1$ for all edges (v, w) on p.
Lemma

the distance between s and t in R increases after each round.

Proof

- Each path $p : s \rightarrow t$ in R has $\text{dist}_R(s, t)$ edges.
- R has no edges (v, w) with $\text{dist}_R(v, t) > \text{dist}_R(w, t) + 1$.
- $\text{dist}_R(v, t) = \text{dist}_R(w, t) + 1$ for all edges (v, w) on p.

\Rightarrow The residual graph R' of the next round has also no edges (v, w) with $\text{dist}_R(v, t) > \text{dist}_R(w, t) + 1$.
Lemma

the distance between \(s \) and \(t \) in \(R \) increases after each round.

Proof

- Each path \(p : s \rightarrow t \) in \(R \) has \(\text{dist}_R(s, t) \) edges.
- \(R \) has no edges \((v, w)\) with \(\text{dist}_R(v, t) > \text{dist}_R(w, t) + 1 \).
- \(\text{dist}_R(v, t) = \text{dist}_R(w, t) + 1 \) for all edges \((v, w)\) on \(p \).

\(\Rightarrow \) The residual graph \(R' \) of the next round has also no edges \((v, w)\) with \(\text{dist}_R(v, t) > \text{dist}_R(w, t) + 1 \).

\(\Rightarrow \) Each path in \(p' \) in \(R' \) must visit edges \((v, w)\) with

\[i = \text{dist}_R(v, t) = \text{dist}_R(w, t) + 1 \quad \text{for all} \quad i \geq \text{dist}_R(s, t). \]
Lemma

The distance between s and t in R increases after each round.

Proof

- Each path $p : s \rightarrow t$ in R has $\text{dist}_R(s, t)$ edges.
- R has no edges (v, w) with $\text{dist}_R(v, t) > \text{dist}_R(w, t) + 1$.
- $\text{dist}_R(v, t) = \text{dist}_R(w, t) + 1$ for all edges (v, w) on p.

\Rightarrow The residual graph R' of the next round has also no edges (v, w) with $\text{dist}_R(v, t) > \text{dist}_R(w, t) + 1$.

\Rightarrow Each path in p' in R' must visit edges (v, w) with $i = \text{dist}_R(v, t) = \text{dist}_R(w, t) + 1$ for all $i \geq \text{dist}_R(s, t)$.

- Paths exclusively existing of such edges were removed in the previous round.
Lemma

the distance between s and t in R increases after each round.

Proof

- Each path $p : s \rightarrow t$ in R has $\text{dist}_R(s, t)$ edges.
- R has no edges (v, w) with $\text{dist}_R(v, t) > \text{dist}_R(w, t) + 1$.
- $\text{dist}_R(v, t) = \text{dist}_R(w, t) + 1$ for all edges (v, w) on p.

\Rightarrow The residual graph R' of the next round has also no edges (v, w) with $\text{dist}_R(v, t) > \text{dist}_R(w, t) + 1$.

\Rightarrow Each path in p' in R' must visit edges (v, w) with $i = \text{dist}_R(v, t) = \text{dist}_R(w, t) + 1$ for all $i \geq \text{dist}_R(s, t)$.

- Paths exclusively existing of such edges were removed in the previous round.

\Rightarrow Each path in p' has length $> \text{dist}_R(s, t)$.
A new problem

Given: vertices s and t in a directed weighted graph, $k \in \mathbb{N}$

Output: k edge-disjoint paths from s to t, such that the sum of the edge weights is minimal.
A simple approach

- Let $g(v, w)$ be the weight of (v, w).
- Assume we have constructed edge-disjoint paths p_1, \ldots, p_i of shortest total length.
- Search for a shortest path in R_{p_1, \ldots, p_k}, where we assign weight $-g(v, w)$ to a backward edge (w, v).
Example:
Example:
Example:
Example:
Example:
Simplification

We assume that the graph is antisymmetric, i.e.,

\[(v, w) \in E \Rightarrow (w, v) \notin E.\]

Otherwise the following replacement is possible.
Simplification (positive edge weights)

- We replace \(g(v, w) \) by
 \[
 g^*(v, w) := g(v, w) + \text{dist}_g(s, v) - \text{dist}_g(s, w).
 \]

- For a path \(p = ((u_i, v_i))_{1 \leq i \leq k} \) from a vertex \(u \) to a vertex \(v \), we have

 \[
 \sum_i g^*((u_i, v_i)) = \sum_i g((u_i, v_i)) + \sum_{1 \leq i \leq k} \text{dist}_g(s, u_i) - \sum_{1 \leq i \leq k} \text{dist}_g(s, v_i)
 = \text{dist}_g(s, u) - \text{dist}_g(s, v) + \sum_i g((u_i, v_i)).
 \]

\(\Rightarrow\) A shortest path \(p : u \rightarrow v \) with respect to \(g \) is also a shortest path with respect to \(g^* \) and vice versa.

\(\Rightarrow\) We only have to compute shortest with respect to \(g^* \).
Advantages of the new edge weights

- All edge weights are positive.
- Edges on a shortest path p have weight 0.
- Edges in R_p have weight 0.
The correctness of the simple approach follows from the following lemma.

Lemma

- Let p_1, \ldots, p_k simple edge-disjoint paths from s to t of shortest total length d.
- Let p be a shortest path from s to t in G.
- Then there are edge-disjoint paths $q_1 \ldots, q_{k-1}$ from s to t in R_p of total length $\leq d$.
Correctness of the simple approach

The correctness of the simple approach follows from the following lemma.

Lemma

- Let p_1, \ldots, p_k simple edge-disjoint paths from s to t of shortest total length d.
- Let p be a shortest path from s to t in G.
- Then there are edge-disjoint paths $q_1 \ldots, q_{k-1}$ from s to t in R_p of total length $\leq d$.
Lemma

- Let p_1, \ldots, p_k simple edge-disjoint paths from s to t of shortest total length d.
- Let p be a shortest path from s to t in G.
- Then there are edge-disjoint paths q_1, \ldots, q_k from s to t in R_p of total length $\leq d$.

Torsten Tholey

Universität Augsburg
Lemma

- Let p_1, \ldots, p_k simple edge-disjoint paths from s to t of shortest total length d.
- Let p be a shortest path from s to t in G.
- Then there are edge-disjoint paths q_1, \ldots, q_k from s to t in R_p of total length $\leq d$.

I_u should mean

- q_1, \ldots, q_k are edge-disjoint paths on $(V_G, E_G \cup E_{R_G,p})$ of length $\leq d$ except that edges of $p[u, t]$ are used ≤ 2 times.
- The backward edges of q_1, \ldots, q_k are part of $p[s, u]$.
- $q_k[s, u] = p[s, u]$.

I_s holds for $q_i = p_i$ for $i < k$, $q_k = p$. We want that I_t holds.
Proof (Sketch)

- Assume that I_u holds for a vertex u on p.
- Then we show that it also holds for a vertex after u on p.
- After a finite number of steps I_t holds.
Proof (Sketch)

- Assume that I_u holds for a vertex u on p.
- Then we show that it also holds for a vertex after u on p.
- After a finite number of steps I_t holds.

Proof (Sketch)

- Assume that I_u holds for a vertex u on p.
- Let (v, w) be the next edge on $p[u, t]$ that is part of q_1, \ldots, q_k.
Case 1 \(((v, w)\) does not exist)\n
- Replace \(q_k[u, t]\) by \(p[u, t]\).
Case 1 \((v, w)\) does not exist

- Replace \(q_k[u, t]\) by \(p[u, t]\).
- \(q_k\) remains to be a simple path.
Case 1 ((v, w) does not exist)

- Replace $q_k[u, t]$ by $p[u, t]$.
- q_k remains to be a simple path.
- Assumption: $q_k[u, t]$ was shorter than $p[u, t]$.

\[s \xrightarrow{q_k} u \xrightarrow{q_k} t \Rightarrow s \xrightarrow{q_k} u \xrightarrow{q_k} t\]
Case 1 \(((v, w)\) does not exist)\

- Replace \(q_k[u, t]\) by \(p[u, t]\).
- \(q_k\) remains to be a simple path.
- **Assumption:** \(q_k[u, t]\) was shorter than \(p[u, t]\)

\[\Rightarrow q_k\] uses a backward edge.

\[s\rightarrow u\rightarrow t\]

\[s\rightarrow u\rightarrow t\]

\[s\rightarrow u\rightarrow t\]
Case 1 ((v, w) does not exist)

- Replace $q_k[u, t]$ by $p[u, t]$.
- q_k remains to be a simple path.
- Assumption: $q_k[u, t]$ was shorter than $p[u, t]$

$\implies q_k$ uses a backward edge.

- The corresponding forward edge appears on $p[s, u] = q_k[s, u]$ (I_u).
Case 1 \(((v, w) \text{ does not exist})\)

- Replace \(q_k[u, t]\) by \(p[u, t]\).
- \(q_k\) remains to be a simple path.
- **Assumption:** \(q_k[u, t]\) was shorter than \(p[u, t]\)
 \[\Rightarrow q_k\text{ uses a backward edge.}\]
- The corresponding forward edge appears on \(p[s, u] = q_k[s, u]\ (I_u)\).
- **Contradiction to \(q_k\) being simple.**
Case 1 \(((v, w) \text{ does not exist)}\)

- Replace \(q_k[u, t]\) by \(p[u, t]\).
- \(q_k\) remains to be a simple path.
- Assumption: \(q_k[u, t]\) was shorter than \(p[u, t]\)
 \[\Rightarrow q_k\] uses a backward edge.
- The corresponding forward edge appears on \(p[s, u] = q_k[s, u]\) \((I_u)\).
- Contradiction to \(q_k\) being simple.
 \[\Rightarrow I_t\] holds after the replacement.
Case 2 ((v, w) appears on q_k)

- Replace $q_k[u, w]$ to $p[u, w]$
Case 2 \((v, w)\) appears on \(q_k\)

- Replace \(q_k[u, w]\) to \(p[u, w]\)
- Shorten the resulting paths if it is not simple.
Case 2 \((v, w)\) appears on \(q_k\)

- Replace \(q_k[u, w]\) to \(p[u, w]\)
- Shorten the resulting paths if it is not simple.
- \(p[u, w]\) not longer than \(q_k[u, w]\) (similar to Case 1)
Case 2 \((v, w)\) appears on \(q_k\)

- Replace \(q_k[u, w]\) to \(p[u, w]\)
- Shorten the resulting paths if it is not simple.
- \(p[u, w]\) not longer than \(q_k[u, w]\) (similar to Case 1)

\[\Rightarrow I_{w'}\] holds for a vertex after \(u\) on \(p\).

\[
\begin{array}{c}
\text{Case 2 (labelling)} \\
\begin{array}{c}
\text{Replace } q_k[u, w] \text{ to } p[u, w] \\
\text{Shorten the resulting paths if it is not simple.} \\
\text{p[u, w] not longer than } q_k[u, w] \text{ (similar to Case 1)} \\
\Rightarrow I_{w'} \text{ holds for a vertex after } u \text{ on } p.
\end{array}
\end{array}
\]
Case 3 \((v, w)\) appears on \(p_i\) for \(i < k - 1\)

- Replace \(q_k\) by \(q_k[s, u] \circ p[u, v] \circ q_i[v, t]\) and \(q_i\) by \(q_i[s, v] \circ p[v, u] \circ q_k[u, t]\).
Case 3 \(((v, w) \text{ appears on } p_i \text{ for } i < k - 1) \)

- Replace \(q_k \) by \(q_k[s, u] \circ p[u, v] \circ q_i[v, t] \) and \(q_i \) by \(q_i[s, v] \circ p[v, u] \circ q_k[u, t] \).
- This does not change the length since backward edges have length 0.
Case 3 \((v, w)\) appears on \(p_i\) for \(i < k - 1\)

- Replace \(q_k\) by \(q_k[s, u] \circ p[u, v] \circ q_i[v, t]\) and \(q_i\) by \(q_i[s, v] \circ p[v, u] \circ q_k[u, t]\).

- This does not change the length since backward edges have length 0.

\(\Rightarrow I_w\) holds.
Given: Vertices s, t_1, \ldots, t_k in a graph.
Output: Disjoint paths $p_1 : s \rightarrow t_1, \ldots, p_k : s \rightarrow t_k$.
Solution: Reduction to single source/single target version.
Multiple sources and targets

single source/multiple target

Given: Vertices s, t_1, \ldots, t_k in a graph.

Output: Disjoint paths $p_1 : s \rightarrow t_1, \ldots, p_k : s \rightarrow t_k$.

Solution: Reduction to single source/single target version.
Multiple sources and targets

Multiple source/multiple target

Given: Vertices $s_1, t_1, \ldots, t_1, t_k$ in a graph.

Output: k disjoint paths connecting each source with an arbitrary target.

Solution: Reduction to single source/single target version.
Multiple sources and targets

Given: Vertices $s_1, t_1, \ldots, t_1, t_k$ in a graph.
Output: k disjoint paths connecting each source with an arbitrary target.
Solution: Reduction to single source/single target version.
The \(k \)-VDPP

The \((k-)\)disjoint path-problem \((k-)\)VDPP

Given: Vertex pairs \((s_1, t_1), \ldots, (s_k, t_k)\) in a graph.

Output: Disjoint paths \(p_1 : s_1 \rightarrow t_1, \ldots, p_k : s_k \rightarrow t_k\).
The \(k \)-VDPP

The \((k-)\)disjoint path-problem \((k-)\)VDPP

Given: Vertex pairs \((s_1, t_1), \ldots, (s_k, t_k)\) in a graph.

Output: Disjoint paths \(p_1 : s_1 \to t_1, \ldots, p_k : s_k \to t_k\).
Applications: Simple Computer Networks

Torsten Tholey
Universität Augsburg
Step 1: Remove all small vertex-cuts (Sketch)

- Reduce the problem to one connected component
Step 1: Remove all small vertex-cuts (Sketch)

- Reduce the problem to one connected component
- Afterwards remove all vertex-cuts of size 1 (trivial by using a so-called block cutpoint tree).
Solving the 2-VDPP (Shiloach’s algorithm)

Step 1: Remove all small vertex-cuts (Sketch)

- Reduce the problem to one connected component
- Afterwards remove all vertex-cuts of size 1 (trivial by using a so-called block cutpoint tree).
- Remove all vertex-cuts of size 2 (Sketch):

![Diagram](attachment:image.png)
Solving the 2-VDPP (Shiloach’s algorithm)

Step 1: Remove all small vertex-cuts (Sketch)

- Reduce the problem to one connected component
- Afterwards remove all vertex-cuts of size 1 (trivial by using a so-called block cutpoint tree).
- Remove all vertex-cuts of size 2 (Sketch):
 - Construct disjoint paths p_1, p_2 from $\{s_1, s_2\}$ to $\{t_1, t_2\}$.

![Diagram of 2-vertex cuts](image)
Step 1: Remove all small vertex-cuts (Sketch)

- Reduce the problem to one connected component
- Afterwards remove all vertex-cuts of size 1 (trivial by using a so-called block cutpoint tree).
- Remove all vertex-cuts of size 2 (Sketch):

 Construct disjoint paths p_1, p_2 from $\{s_1, s_2\}$ to $\{t_1, t_2\}$. If s_1 is connected to t_2.

The diagram illustrates the process of removing vertex-cuts. The 2-vertex cuts are indicated by dashed lines. The vertices s_1, s_2, t_1, t_2 are connected through the intermediate vertices u_1, v_1, u_2, v_2.
Solving the 2-VDPP (Shiloach’s algorithm)

Step 1: Remove all small vertex-cuts (Sketch)

- Reduce the problem to one connected component
- Afterwards remove all vertex-cuts of size 1 (trivial by using a so-called block cutpoint tree).
- Remove all vertex-cuts of size 2 (Sketch):
 - Construct disjoint paths p_1, p_2 from $\{s_1, s_2\}$ to $\{t_1, t_2\}$.
 - If s_1 is connected to t_2.
 - Try to find a crossing in one of the 3-connected components between consecutive vertex cuts.
Step 2: Test if G is planar

A graph is *planar* if it can be drawn in the plane without any crossing edges.
Solving the 2-VDPP (Shiloach’s algorithm)

Step 2: Test if G is planar

A graph is *planar* if it can be drawn in the plane without any crossing edges.

```
planar
```

![Graph diagram](attachment:image.png)
Step 2: Test if G is planar

A graph is *planar* if it can be drawn in the plane without any crossing edges.

planar

since it can be also drawn as
A subdivision H of a graph $G = (V, E)$ is a graph (V', E') for which there are injective mappings $\varphi_1 : V' \rightarrow V$ $\varphi_2 : E' \rightarrow \mathcal{P}$ such that

- \mathcal{P} is a set of internally vertex-disjoint paths in G.
- $\varphi_2((u, v)) : \varphi_1(u) \rightarrow \varphi_1(v)$.
Theorem of Kuratowski

A graph is planar if does not contain a subgraph being a subdivision of the K_5 or $K_{3,3}$.

K_5

$K_{3,3}$
Step 2: Test if G is planar

Use one of the well known $O(m + n)$-time algorithms to compute a subgraph of G being a subdivision of a K_5 of $K_{3,3}$ if it exists.
Solving the 2-VDPP (Shiloach’s algorithm)

Step 2: Test if G is planar

Use one of the well known $O(m + n)$-time algorithms to compute a subgraph of G being a subdivision of a K_5 of $K_{3,3}$ if it exists.

Step 3: If G is planar

Solve the problem as shown on the following slides.
Solving the 2-VDPP on a planar triconnected graph

Case 1

s_1 and t_1 are on the boundary of a common face F and each of the two boundary paths contains one of s_2 and t_2
Solving the 2-VDPP on a planar triconnected graph

Case 1

\(s_1 \) and \(t_1 \) are on the boundary of a common face \(F \) and each of the two boundary paths contains one of \(s_2 \) and \(t_2 \)

- Output that the instance is not solvable.
Case 2

s_1 and t_1 are on the boundary of a common face F and one of the two boundary paths p does contain neither s_2 nor t_2.
Solving the 2-VDPP on a planar triconnected graph

Case 2

s_1 and t_1 are on the boundary of a common face F and one of the two boundary paths p does contain neither s_2 nor t_2.

- Let q_1, q_2, q_3 disjoint paths from s_2 to t_2.
- Return p, q with $q \in \{q_1, q_2, q_3\}$ not visiting a vertex of p.
- Such a path must exist: otherwise there is a subdivision of a $K_{3,3}$ after adding a new vertex x into F:

![Diagram](image-url)
Solving the 2-VDPP on a planar triconnected graph

Case 3

s_1 and t_1 are not on the boundary of a common face F.
Solving the 2-VDPP on a planar triconnected graph

Case 3

s_1 and t_1 are not on the boundary of a common face F.

Solution

One can always find a solution.
Step 4: If a subdivision of a K_5 is found

- If $\{s_1, s_2, t_1, t_2\}$ is separated by a 3-vertex cut S from at least one vertex v of the K_5:
 - Remove the connected component containing v.
 - Insert edges between all vertex pairs in S.
 - Solve the 2-VDPP on the new instance.
Step 5: If a subdivision of a K_5 is found

- If $\{s_1, s_2, t_1, t_2\}$ are not separated by a 3-vertex cut S from at least one vertex v of the K_5:
 - Use the K_5 to connect the vertex pairs correctly.
Step 5: If a subdivision of a K_5 is found

- If $\{s_1, s_2, t_1, t_2\}$ are not separated by a 3-vertex cut S from at least one vertex v of the K_5:
 - Use the K_5 to connect the vertex pairs correctly.
Step 5: If a subdivision of a K_5 is found

- If $\{s_1, s_2, t_1, t_2\}$ are not separated by a 3-vertex cut S from at least one vertex v of the K_5:
- Use the K_5 to connect the vertex pairs correctly.
Step 5: If a subdivision of a K_5 is found

- If $\{s_1, s_2, t_1, t_2\}$ are not separated by a 3-vertex cut S from at least one vertex v of the K_5:
 - Use the K_5 to connect the vertex pairs correctly.
Step 5: If a subdivision of a K_5 is found

- If $\{s_1, s_2, t_1, t_2\}$ are not separated by a 3-vertex cut S from at least one vertex v of the K_5:
 - Use the K_5 to connect the vertex pairs correctly.
Step 5: If a subdivision of a K_5 is found

If $\{s_1, s_2, t_1, t_2\}$ are not separated by a 3-vertex cut S from at least one vertex v of the K_5:

- Use the K_5 to connect the vertex pairs correctly.
Solving the 2-VDPP (Shiloach’s algorithm)

Step 6: If a subdivision of a $K_{3,3}$ is found

- Similar to the case of a K_5.
Known results

Knuth (1974), Lynch (1975)

The DPP is \mathcal{NP}-hard.
Knuth (1974), Lynch (1975)

The DPP is \(\mathcal{NP} \)-hard.

Robertson and Seymour (1995)

The \(k \)-DPP on undirected graphs can be solved in polynomial time for all fixed \(k \in \mathbb{N} \).
<table>
<thead>
<tr>
<th>Known results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knuth (1974), Lynch (1975)</td>
</tr>
<tr>
<td>The DPP is \mathcal{NP}-hard.</td>
</tr>
<tr>
<td>Robertson and Seymour (1995)</td>
</tr>
<tr>
<td>The k-DPP on undirected graphs can be solved in polynomial time for all fixed $k \in \mathbb{N}$.</td>
</tr>
<tr>
<td>Fortune, Hopcroft and Wyllie (1980)</td>
</tr>
<tr>
<td>The k-DPP on directed graphs is \mathcal{NP}-hard for all $k \geq 2$.</td>
</tr>
</tbody>
</table>
A directed acyclic graph (dag) is a directed graph $G(V, E)$ such that there is a mapping $	au : V \rightarrow \{1, \ldots, |V|\}$ with

$$\tau(v) \leq \tau(w) \text{ for all } (v, w) \in E.$$

$	au$ is called a topological numbering of G.
A directed acyclic graph (dag)
is a directed graph $G(V, E)$ such that there is a mapping
$\tau : V \to \{1, \ldots, |V|\}$ with

$$\tau(v) \leq \tau(w) \text{ for all } (v, w) \in E.$$

τ is called a topological numbering of G.

\begin{center}
\begin{tikzpicture}
\node[circle, draw] (1) at (0,2) {1};
\node[circle, draw] (2) at (0,0) {2};
\node[circle, draw] (3) at (1,-1) {3};
\node[circle, draw] (4) at (2,0) {4};
\node[circle, draw] (5) at (3,2) {5};
\node[circle, draw] (6) at (2,0) {6};
\draw (1) -- (2);
\draw (1) -- (3);
\draw (1) -- (4);
\draw (3) -- (2);
\draw (3) -- (4);
\draw (4) -- (6);
\end{tikzpicture}
\end{center}
The k-DPP on directed acyclic graphs
motivation:
The k-DPP on directed acyclic graphs

motivation:
The k-DPP on directed acyclic graphs

motivation:
The k-DPP on directed acyclic graphs

motivation:
The k-DPP on directed acyclic graphs

motivation:
The k-DPP on directed acyclic graphs

motivation:
The k-DPP on directed acyclic graphs
The k-DPP on directed acyclic graphs
The k-DPP on directed acyclic graphs

Torsten Tholey
Universität Augsburg
The k-DPP on directed acyclic graphs
The k-DPP on directed acyclic graphs

G

G'
The k-DPP on directed acyclic graphs

G

G'

Torsten Tholey
Universität Augsburg
The k-DPP on directed acyclic graphs

G

G'
The k-DPP on directed acyclic graphs

G

1 -> 3 -> 4
2 -> 3
3 -> 4
3 -> 5
3 -> 6

G'

1,2 -> 1,3 -> 1,6
1,2 -> 4,3

1,2 -> 5,1
1,2 -> 5,2
1,2 -> 5,3
1,2 -> 5,4
1,2 -> 6,5

1,2 -> 1,5
1,2 -> 2,1
1,2 -> 2,5
1,2 -> 3,1
1,2 -> 3,5
1,2 -> 4,2
1,2 -> 4,6
1,2 -> 5,6
1,2 -> 6,2
1,2 -> 6,3
1,2 -> 6,4
1,2 -> 1,4

Torsten Tholey
Universität Augsburg
Observation

There are k vertex-disjoint paths $p_i : s_i \rightarrow t_i$ of total length d in G if and only if there is a path $p : (s_1, \ldots, s_k) \rightarrow (t_1, \ldots, t_k)$ of length d in G'.
Observation

- There are k vertex-disjoint paths $p_i : s_i \to t_i$ of total length d in G if and only if there is a path $p : (s_1, \ldots, s_k) \to (t_1, \ldots, t_k)$ of length d in G'.
- G' has $O(mn^{k-1})$ edge and $O(n^k)$ vertices and can be constructed in $O(mn^{k-1})$ time.
Observation

- There are k vertex-disjoint paths $p_i : s_i \rightarrow t_i$ of total length d in G' if and only if there is a path $p : (s_1, \ldots, s_k) \rightarrow (t_1, \ldots, t_k)$ of length d in G'.
- G' has $O(mn^{k-1})$ edge and $O(n^k)$ vertices and can be constructed in $O(mn^{k-1})$ time.

Theorem

Disjoint paths of shortest total length solving the k-VDPP can be computed in $O(mn^{k-1})$ time.
Observation

- There are k vertex-disjoint paths $p_i : s_i \rightarrow t_i$ of total length d in G
 if and only if there is a path $p : (s_1, \ldots, s_k) \rightarrow (t_1, \ldots, t_k)$ of length d in G'.
- G' has $O(mn^{k-1})$ edge and $O(n^k)$ vertices and can be constructed in $O(mn^{k-1})$ time.

Theorem

Disjoint paths of shortest total length solving the k-VDPP can be computed in $O(mn^{k-1})$ time.

Remark

- The result can be extended to weighted graphs with a running time linear in the computation of a shortest weighted path in graph with $O(n^k)$ vertices and $O(mn^{k-1})$ edges.
The algorithm of Lucchesi and Giglio

1. Delete all ingoing edges of s_i and outgoing edges of t_i.
The algorithm of Lucchesi and Giglio

1. Delete all ingoing edges of \(s_i \) and outgoing edges of \(t_i \).
2. Delete all vertices \(v \not\in \{s_1, s_2\} \) with \(\text{indeg}(v) = 0 \) and all \(v \not\in \{t_1, t_2\} \) with \(\text{outdeg}(v) = 0 \).
The algorithm of Lucchesi and Giglio

1. Delete all ingoing edges of s_i and outgoing edges of t_i.
2. Delete all vertices $v \not\in \{s_1, s_2\}$ with $\text{indeg}(v) = 0$ and all $v \not\in \{t_1, t_2\}$ with $\text{outdeg}(v) = 0$.

Diagram:

- Nodes: s_1, s_2, t_1, t_2
- Edges: Incoming to s_1, outgoing from s_1 to s_2, incoming to s_2, outgoing from s_2 to t_1, incoming to t_1, outgoing from t_1 to t_2, incoming to t_2
- Red X: Node s_1 with outgoing edge to s_2

Torsten Tholey
Universität Augsburg
The 2-VDPP: the algorithm of Lucchesi and Giglio

1. Delete all ingoing edges of s_i and outgoing edges of t_i.
2. Delete all vertices $v \notin \{s_1, s_2\}$ with $\text{indeg}(v) = 0$ and all $v \notin \{t_1, t_2\}$ with $\text{outdeg}(v) = 0$.

Torsten Tholey
Universität Augsburg
The algorithm of Lucchesi and Giglio

1. Delete all ingoing edges of s_i and outgoing edges of t_i.

2. Delete all vertices $v \not\in \{s_1, s_2\}$ with indeg$(v) = 0$ and all $v \not\in \{t_1, t_2\}$ with outdeg$(v) = 0$.

3. Delete all vertices $v \not\in \{t_1, t_2\}$ with indeg$(v) = 1$ or outdeg$(v) = 1$ by edge contractions.
The algorithm of Lucchesi and Giglio

1. Delete all ingoing edges of s_i and outgoing edges of t_i.

2. Delete all vertices $v \not\in \{s_1, s_2\}$ with $\text{indeg}(v) = 0$ and all $v \not\in \{t_1, t_2\}$ with $\text{outdeg}(v) = 0$.

3. Delete all vertices $v \not\in \{t_1, t_2\}$ with $\text{indeg}(v) = 1$ or $\text{outdeg}(v) = 1$ by edge contractions.

![Diagram](image)
The algorithm of Lucchesi and Giglio

Observation:
For every pair of different vertices x, y there are
- two disjoint paths from $\{x, y\}$ to $\{t_1, t_2\}$,
Observation:
For every pair of different vertices x, y there are
- two disjoint paths from $\{x, y\}$ to $\{t_1, t_2\}$,
Oberservation:
For every pair of different vertices x, y there are
- two disjoint paths from $\{x, y\}$ to $\{t_1, t_2\}$,
- two disjoint paths from $\{s_1, s_2\}$ to $\{x, y\}$.
The algorithm of Lucchesi and Giglio

4 Construct disjoint paths \(p_1 : s_1 \rightarrow t_1 \) and \(p_2 : s_2 \rightarrow t_2 \) ignoring edge direction.
Definition

A vertex with two incoming or two outgoing edges is called a switch.
The 2-VDPP: the algorithm of Lucchesi and Giglio

The algorithm of Lucchesi and Giglio

5. Remove the switches:
 - u_i: switch with the smallest topological number on p_i.
 - v_i: switch with the smallest topological number on p_i.
 - Construct disjoint paths in G connecting $\{s_1, s_2\}$ with $\{u_1, u_2\}$.
 - Construct disjoint paths in G connecting $\{v_1, v_2\}$ with $\{t_1, t_2\}$.
 - Use these paths to remove the switch as shown on the slides.
A switch with the smallest topological number on

Fall 1

\[
\begin{align*}
{s_1} & \rightarrow {u_1} & \leftarrow {v_1} & \rightarrow {t_1} \\
{s_2} & \rightarrow {u_2} & \leftarrow {v_2} & \rightarrow {t_2}
\end{align*}
\Rightarrow
\begin{align*}
{s_1} & \rightarrow {u_1} & \leftarrow {v_1} & \rightarrow {t_1} \\
{s_2} & \rightarrow {u'_2} & \leftarrow {v_2} & \rightarrow {t'}
\end{align*}
\]

Fall 2

\[
\begin{align*}
{s_1} & \rightarrow {u_1} & \leftarrow {v_1} & \rightarrow {t_1} \\
{s_2} & \rightarrow {u_2} & \leftarrow {v_2} & \rightarrow {t_2}
\end{align*}
\Rightarrow
\begin{align*}
{s_1} & \rightarrow {u_1} & \leftarrow {v_1} & \rightarrow {t_1} \\
{s_2} & \rightarrow {u_2} & \leftarrow {v_2} & \rightarrow {t_2}
\end{align*}
\]

Fall 3

\[
\begin{align*}
{s_1} & \rightarrow {u_1} & \leftarrow {v_1} & \rightarrow {t_1} \\
{s_2} & \rightarrow {u_2} & \leftarrow {v_2} & \rightarrow {t_2}
\end{align*}
\Rightarrow
\begin{align*}
{s_1} & \rightarrow {u_1} & \leftarrow {v_1} & \rightarrow {t_1} \\
{s_2} & \rightarrow {u'_2} & \leftarrow {v_1} & \rightarrow {t'}
\end{align*}
\]
Conclusion

Observation

- The running time is dominated by the removal of the switches.
- We have to remove at most n switches.
- For each of them four paths have to be constructed in $O(m + n)$ time.

\Rightarrow Lemma: The whole running time is $O(n(m + n))$.
We use a data structure that allows us:
To compute for fixed s_1, s_2 and any pair of vertices t_1, t_2:
paths p_1, p_2 connecting $\{s_1, s_2\}$ and $\{t_1, t_2\}$ arbitrarily.
to predict in $O(1)$ time which pairs a connected.
Delay the paths replacements until the very end.
The 2-VDPP: A new Approach

Dominator tree

Torsten Tholey
Universität Augsburg
The 2-VDPP: A new Approach

Dominator tree
The 2-VDPP: A new Approach

Dominator tree

Torsten Tholey Universität Augsburg
The 2-VDPP: A new Approach

Torsten Tholey
Universität Augsburg
The 2-VDPP: A new Approach

Dominator tree

Shortest-Paths tree

Torsten Tholey
Universität Augsburg
The 2-VDPP: A new Approach

Dominator tree

Shortest-Paths tree

Torsten Tholey
Universität Augsburg
The 2-VDPP: A new Approach

Dominator tree

Shortest-Paths tree

Torsten Tholey
Universität Augsburg
The 2-VDPP: A new Approach

Dominator tree

Shortest-Paths tree

Torsten Tholey

Universität Augsburg
The 2-VDPP: A new Approach

Dominator tree

Shortest-Paths tree

Torsten Tholey
Universität Augsburg
The 2-VDPP: A new Approach

Dominator tree

Shortest-Paths tree

Torsten Tholey
Universität Augsburg
The 2-VDPP: A new Approach

Dominator tree

Shortest-Paths tree

Torsten Tholey
Universität Augsburg
Thank You!